Author: Vaibhav Gandhi
Publisher: Academic Press
ISBN: 012801587X
Size: 17.23 MB
Format: PDF
View: 1231
Get Books
Brain-computer interface (BCI) technology provides a means of communication that allows individuals with severely impaired movement to communicate with assistive devices using the electroencephalogram (EEG) or other brain signals. The practicality of a BCI has been possible due to advances in multi-disciplinary areas of research related to cognitive neuroscience, brain-imaging techniques and human-computer interfaces. However, two major challenges remain in making BCI for assistive robotics practical for day-to-day use: the inherent lower bandwidth of BCI, and how to best handle the unknown embedded noise within the raw EEG. Brain-Computer Interfacing for Assistive Robotics is a result of research focusing on these important aspects of BCI for real-time assistive robotic application. It details the fundamental issues related to non-stationary EEG signal processing (filtering) and the need of an alternative approach for the same. Additionally, the book also discusses techniques for overcoming lower bandwidth of BCIs by designing novel use-centric graphical user interfaces. A detailed investigation into both these approaches is discussed. An innovative reference on the brain-computer interface (BCI) and its utility in computational neuroscience and assistive robotics Written for mature and early stage researchers, postgraduate and doctoral students, and computational neuroscientists, this book is a novel guide to the fundamentals of quantum mechanics for BCI Full-colour text that focuses on brain-computer interfacing for real-time assistive robotic application and details the fundamental issues related with signal processing and the need for alternative approaches A detailed introduction as well as an in-depth analysis of challenges and issues in developing practical brain-computer interfaces.
Language: en
Pages: 258
Pages: 258
Brain-computer interface (BCI) technology provides a means of communication that allows individuals with severely impaired movement to communicate with assistive devices using the electroencephalogram (EEG) or other brain signals. The practicality of a BCI has been possible due to advances in multi-disciplinary areas of research related to cognitive neuroscience, brain-imaging
Language: en
Pages: 210
Pages: 210
Assistive robots are categorized as robots that share their area of work and interact with humans. Their main goals are to help, assist, and monitor humans, especially people with disabilities. To achieve these goals, it is necessary that these robots possess a series of characteristics, namely the abilities to perceive
Language: en
Pages: 84
Pages: 84
This book aims to bring to the reader an overview of different applications of brain-computer interfaces (BCIs) based on more than 20 years of experience working on these interfaces. The author provides a review of the human brain and EEG signals, describing the human brain, anatomically and physiologically, with the
Language: en
Pages: 448
Pages: 448
This book deals with the growing challenges of using assistive robots in our everyday activities along with providing intelligent assistive services. The presented applications concern mainly healthcare and wellness such as helping elderly people, assisting dependent persons, habitat monitoring in smart environments, well-being, security, etc. These applications reveal also new
Language: en
Pages: 133
Pages: 133
This book describes ten of the most promising brain-computer-interface (BCI) projects to have emerged in recent years. BCI research is developing quickly, with many new ideas, research groups, and improved technologies. BCIs enable people to communicate just by thinking – without any movement at all. Several different groups have helped
Language: en
Pages: 281
Pages: 281
We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep 1 abreast of the rest of the world in scientific matters. We must maintain our leadership. President
Language: en
Pages: 492
Pages: 492
Smart Wheelchairs and Brain-Computer Interfaces: Mobile Assistive Technologies combines the fields of neuroscience, rehabilitation and robotics via contributions from experts in their field to help readers develop new mobile assistive technologies. It provides information on robotics, control algorithm design for mobile robotics systems, ultrasonic and laser sensors for measurement and
Language: en
Pages: 393
Pages: 393
A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and
Language: en
Pages: 507
Pages: 507
The latest research in the development of technologies that will allow humans tocommunicate, using brain signals only, with computers, wheelchairs, prostheses, and otherdevices.
Language: en
Pages: 666
Pages: 666
Volume I, entitled “Augmentation of Brain Functions: Brain-Machine Interfaces”, is a collection of articles on neuroprosthetic technologies that utilize brain-machine interfaces (BMIs). BMIs strive to augment the brain by linking neural activity, recorded invasively or noninvasively, to external devices, such as arm prostheses, exoskeletons that enable bipedal walking, means of